
410

A Web Based Real-Time 3D Simulator for Ship Design
Virtual Prototype and Motion Prediction

Olivia Chaves, UNIFEI, Itabira/Brazil, oliviachaves@poli.ufrj.br

Henrique Gaspar, NTNU, Ålesund/Norway, henrique.gaspar@ntnu.no

Abstract

This paper proposes an open-source application capable to run real-time ship motion simulations in a
web browser, in any device of any operational system with HTML5 compatibility. This becomes possi-
ble by implementing closed-form expressions for wave-induced motion in JavaScript code, assisted by
THREE.js and WebGL libraries to handle 3D graphics. Furthermore, this approach offers support for
parametric 3D models and fast collaborative virtual prototype development. The breakthrough ad-
vantage consists in adapting the simulation tool requirements to user’s common platform (modern
web browser), instead of forcing the user to comply with the tool requirements (operational system,
installs, updates, commercial software or file format).

1. Introduction – Virtual Simulation for the Web Environment

Virtual simulators have been used in maritime applications for decades, where experience-based de-
sign has progressively integrated simulation and virtual tools to assist the design process. Nowadays,
industry relies in such tools to predict system response, assist operation, and assess design options.
Analysis regarding stability, hydrodynamics and structure, together with 3D modelling, are examples
of the most common virtual applications in ship design – Compit proceedings are full of such exam-
ples.

Currently, mainly commercial software programs are used to perform simulations. The benefits they
provide are undoubted. However, most of them are restricted to a specific operating system (e.g. Win-
dows), and codes are usually black boxes, preventing collaborative development and constraining its
applicability and usability. Moreover, when it comes to 3D modeling software, each of them typically
has its own proprietary file extension format, often causing compatibility issues, and imposing obsta-
cles for sharing.

With respect to ship motion, several non-commercial programs have been developed to simulate ves-
sel’s response in waves, using diverse approaches. Bertram (2014) provides a compilation on this sub-
ject. Two factors could have contributed to the wide application of self-projects: the ship motion theo-
ry is accessible, and if kept to a basic level, the ruling equations do not require sophisticated solvers.
Such projects would be recommended for the conceptual design, where fast and low-cost solutions are
desired, and precise results are not essential. However, such projects may become outdated, due to the
programming language they are written in, and possibly discontinued.

As the internet is essential for everyday life, it is very unlikely that a language specially developed for
web will fade away soon, especially with big players in the market (e.g. Google) supporting common
and open standards such as HTML5, www.w3.org/TR/html5/, and JavaScript. Actually, the tendency
points to a fast and constant development based on current technology, without discontinuation. Re-
cently, open-source web applications have been growing and computational capacity has been expand-
ing towards web efficiency. Whereas hardware suppliers constantly and rapidly release new processors
optimized for web performance, software suppliers often release new versions with improvements on
features rather than on programming, not necessarily updating their code to meet new processor’s rou-
tines.

Given these circumstances, software installed in the client machine will normally be more costly for
computer capacity than any application running inside a web browser, doing the same as the software.
In a recent benchmark, for instance, it was analyzed that MatLab can take up to 800x more time to a
simple parse integer operation when compared to modern script languages, http://julialang.org/. More-

411

over, even commercial software developers are adapting to web trends, creating online versions of
their products (e.g. Microsoft Office, AutoCAD and Adobe Photoshop).

In this context, we propose a web-based open-source ship motion simulator, focusing in collaborative
development. The idea is to give continuity to the work, instead of rebuilding new versions of old
achievements, because they are now unassessed due to the disuse of software programs, programming
languages, or emulators. Besides, developing for web means developing for any device or operating
system (OS), increasing the application reach and eliminating the need of client-side software.

The present simulator is based on Jensen et al. (2004), who proposed closed-form expressions to esti-
mate wave-induced motion for mono-hull vessels. These expressions require only vessel main dimen-
sions and basic hull form coefficients, being especially relevant for conceptual design, where little
information about the hull form is available. The approach allows the designer to vary those parame-
ters, and quickly assess their influence on the wave-induced motion. Jensen’s expressions were im-
plemented in JavaScript code, and transposed to time domain. In this way, parametric real-time simu-
lations are provided by the application, together with a 3D visualization of vessel’s motion in regular
waves.

2. Open-source tools overview

2.1. Open-source technology

Open source is a development methodology (or philosophy) that stands up for a transparent and col-
laborative platform, where monetary profit is secondary. It is based on free access to the software
code, allowing users to not only see, but also modify it. In short, it can be summarized by the follow-
ing facts:

• Continuous improvement; anyone can contribute or fix the code without having to wait for the

next version release.
• Room for customization; issues can be better addressed due to customized solutions.
• Company independence; the software improvement or continuation may depend on the users,

rather than exclusively on the owner company.
• Free support online; there are many user’s communities online ready to assist each other.
• Total cost; comparing to commercial software, it is cheaper due to collaborative development

and lack of investments in marketing, security, testing, etc.
• Flexibility; the code can be modified to best adapt to user’s needs.

Although anyone can adapt the source code, its ownership/license may remain with the original devel-
oper (if desired), regardless anyone’s contribution to the software. Famous examples of open-source
software are Linux operating systems (e.g. Ubuntu, Gentoo) and the Mozilla Firefox browser. An
overview of the license terms for maritime engineering is discussed by Bertram et al. (2006). All tools
and resources used to develop the Ship Motion Simulator are either free or open source, and a brief
overview about them will be given in the following topics.

2.2. JavaScript

According to Mozilla Developers Network (MDN), https://developer.mozilla.org/, JavaScript (JS) is a
lightweight, interpreted, programming language with first-class functions. It is best known as the
scripting language for the Web. It is a prototype-based, multi-paradigm, dynamic scripting language,
supporting object-oriented, imperative, and functional programming styles. Practically, JavaScript is
responsible for adding interactivity to webpages. As the most used programing language nowadays, it
will stay relevant as long as people use the Internet. JavaScript is compatible to diverse OS and devic-
es. If there is a web browser the code can be executed. It has the analytical capacity of any other pro-
gramming language, plus it can run real-time simulations. There is no need to compile or wait for the
results, and a text editor (e.g. Notepad) suffices to write code. Compared to the old times, where each

412

mobile OS had its own programming language (e.g. Objective-C for iOS; Java for Android; C# for
Microsoft), JavaScript presents a great evolution in standardizing. Additionally, it runs in the client
machine, which performance may be either enhanced or constrained by the client’s hardware; it does
not require constant connection to the net.

2.3. WebGL

WebGL (Web Graphics Library) is a cross-browser JavaScript library/API, which is used by
THREE.js as a rendering complement. It allows interactive advanced graphics to be rendered within a
web browser and optimizes the hardware use. WebGL demands less from hardware because it
“shares” the rendering work. Some features that needed to be handled by the hardware can now be
handled by the language, resulting in a lower hardware requests. In addition, WebGL does not use
plug-ins and there is no need for installs or updates, which is another significant advantage compared
to the decaying Adobe Flash. WebGL has been used in applications from gaming to science. For ex-
ample, NASA released their interactive educative tool ‘Experience Curiosity’, Fig. 1, which simulates
the Curiosity Rover’s adventure in Mars. Neuroscientists have developed a real-time visual explora-
tion of the connectome data including FreeSurfer structural reconstruction, tractography, and network
data all within the browser, Fig. 2, Ginsburg et al. (2011), all WebGL based.

Fig. 1: Experience Curiosity Fig. 2: Connectome visualization

2.4. THREE.js

THREE.js is another cross-browser JavaScript library/API, threejs.org. It is used to create and display
animated 3D computer graphics on a browser. THREE.js allows GPU-accelerated 3D animations to be
created as part of a website using JavaScript language. Significant advantages of THREE.js are the
possibility to add and remove objects from a scene at run-time, communication with OpenGL (through
WebGL), several compatibility solutions, collaborative development, and free support online. Moreo-
ver, the THREE.js library has innumerous features such as (currently) three camera options, six con-
trol types, thirteen material variations, four texture types, nineteen loader options, debugging, etc. This
set of features allows building 3D animations just like in any dedicated software.

2.5. STL (STereoLithography)

STL is a three-dimensional representation of a surface geometry. Although lacking some modern fea-
tures and criticized for its heavy file size, it is an open-standard file format accepted by almost every
CAD program in the market today. Especially used for 3D rapid prototyping and 3D printing, this
format carries information exclusively about the object’s geometry, describing its surfaces through
triangles, without any other object property such as color or texture. Thus, despite its simplicity, this
format can be used to transport the hull geometry into the Simulator, not requiring any specific soft-
ware to generate it.

413

2.6. Collada (COLLAborative Design Activity)

Collada (COLLAborative Design Activity) is a file format used to transport 3D assets. It is capable to
carry more information about the 3D environment (including geometry, materials, shaders, effects,
lights, or even physics and animations). Compared to STL, Collada is preferred as it can confer mate-
rial properties to the model and offers support for exchanging advanced 3D graphics assets between
applications. However, more sophisticated software is required to generate such file, and in this case,
there are much fewer free programs supporting Collada than STL. Yet, Blender is an example of free,
open-source software that supports Collada, www.blender.org/, Fig. 3.

Fig. 3: Blender interface and exporting formats, such as Collada and .STL files

3. Virtual Prototype and the Web

Virtual prototyping, Chaves et al. (2015), is extensively used by industry, but has not crossed the in-
ternet’s barrier regarding the ship design sector. Currently available JavaScript APIs (e.g. THREE.js
and WebGL) generate favorable conditions to bring prototyping to the web or even to a web-based
virtual reality environment. Although there are not many examples yet, the internet is evolving to em-
brace productivity tools (e.g. Office and Photoshop), and engineering applications (e.g. Hull Lines
Generator, www.shiplab.hials.org/app/shiplines/, 3D Configurator, www.shiplab.hials.org/app/
3dconfigurator/, and Ship Motion Application, www.shiplab.hials.org/app/shipmotion/).

Software engineering is completely focused on the end user, which fundamentally should provide
solutions that people wants to see. Pressman (2005) establishes a comparison between software and
web applications, demystifying their difference and distance: Web pages are user interfaces, HTML
programming is programming, and browser-deployed applications are software systems that can bene-
fit from basic software engineering principles.

Web is today the most optimized and used GUI (Graphical User Interface) worldwide. Based on
Event-driven Programming, a Web GUI provides interactivity by “watching” for events. Events in-
clude user’s actions such as mouse click, scrolling, hover over, key press, etc. This type of GUI is
ready to accept user’s input at any time, rather than accepting inputs only when asked, Fig. 4.

Fig. 4: GUI action principles

Code	execution Program	asks	for	
user	input

User	provides	
input

Events																					
(user	actions) Code	execution

Principle 1

Principle 2

414

Both the amount of interactivity and the focus on usability make the web appealing and contribute to
attracting more and more adepts. User-friendly characteristics are even more enhanced on mobiles,
increasing the potential to use it as a tool. According to Hoos et al. (2015), mobile apps provide a huge
potential for increased flexibility and efficiency due to their ‘anywhere and anytime’ characteristics.

User-friendly comes with simplicity. Therefore, making extensive trials or complex procedures to
become user-friendly might be a challenge when it comes to adapting engineering tools to the web
frame. However, precise analyses and optimized results are not necessary in the early design phase.
Design concepts are full of considerations and assumptions, creating simplified models to be further
developed. So, we believe that the potential to apply web-based engineering tools are in solving these
early simple problems, in order to save time, money and avoid mistakes.

For ship design, web tools allow an intuitive, multi-platform application, which can be used in mo-
biles, computers, tablets, or any device supporting HTML5. The presented simulator allows assessing
design options by varying vessel’s main dimensions and verifying resulting ship motion. It also in-
cludes a vessel’s 3D visualization (representation), making room for virtual prototyping, Chaves et al.
(2015).

4. Methodology

4.1 Code structure

Considering today’s trends, recognizing JavaScript potential and WebGL capabilities to handle 3D
advanced graphics, THREE.js was chosen to develop a web-based simulator, Fig. 5. The 3D environ-
ment is composed by four basic elements: camera, light, scene, and render. In order to allow the user
to navigate the camera, orbit controls were implemented. Then two core objects, the vessel and the
ocean, were included in the scene and their motion encoded. Finally, a console (GUI) was added so
that the user can input both wave and hull form parameters.

Fig. 5: Ship Motion Simulator main components

The vessel 3D model was designed outside the web application, and included (imported) into the scene
exclusively for visualization purposes. As modeling a hull is not simple, and becomes even more diffi-
cult without using a dedicated CAD software, the following procedures are suggested to create a Col-
lada file.

(1) Using a hull modeling dedicated CAD software to generate the hull 3D geometry;
(2) Exporting the 3D geometry in a standard format such as .stl, .obj, .igs;
(3) Importing to a software that supports 3D advanced assets, and is capable of exporting Collada

(e.g. Blender, Rhinoceros);
(4) Adding material, texture, shaders, effects, ambient light, and/or any other asset to the hull ge-

ometry, in order to confer reality to the hull representation;
(5) Exporting the final scene as Collada file.

415

0

Collada was the file format chosen to transport advanced 3D assets from the modelling software to the
web application. Simpler file formats such as STL and OBJ could also be used, and the procedure
above would stop at number (2), but the visualization realism would be considerably decreased.

The vessel motion amplitude is calculated by closed-form expressions given in Jensen et al. (2004),
based on hull form parameters (L, B, T, CB, CP, CWP etc.). This method provides a rational and effi-
cient procedure to predict the wave-induced motions with sufficient engineering accuracy in conceptu-
al design. Bertram (2014) discusses that this method, together with many others for seakeeping analy-
sis, works well if used within its designed scope. Apparently, both Jensen et al. (2004) and Bertram
(2014) agree that this method provides acceptable results, but remind us that reality is more complex.
For instance, roll motions are dominated by nonlinear viscous damping, which are much more difficult
to calculate.

In Jensen's et al. (2004) method, the ship is represented by a homogeneously loaded box-shaped barge
with the beam modified so that the total mass of the ship equals the buoyancy. The method considers
the vessel in regular waves and deep waters. Pitch and heave are always considered with 90o phase
angle between them, disregarding coupling between them. The closed-form expressions’ results were
verified against model tests and strip theory calculations.

For the real-time Simulator, the motion amplitude is transposed to the time domain:

𝜂"(𝑡) = 𝜂" ×𝑠𝑖𝑛 𝜔×𝑡 + 𝜃" 𝑗 = 3, 4, 5. (1)

Where 𝜂" is the closed-form expressions output for a given frequency;

𝜔 is the wave period set by the user;
𝑡 is the time;
𝜃" is the phase angle;
 j = 3, 4 and 5 indexes refer to heave, roll and pitch, respectively.

The ocean 3D object is constructed entirely by THREE.js features. It is basically a plan geometry, Fig.
6, in which a texture is applied, Fig. 7.

Fig. 6: Ocean dynamic geometry

 Fig. 7: Ocean geometry + texture + sky

The geometry is divided in several sub-segments, and set to dynamic. The waves are generated by a
normal distribution function that updates the height of each vertex, forming waves in the plan. The
normal distribution complies with the wave elevation equation for regular waves.

𝜁(𝑥, 𝑡) = 𝜁6×𝑠𝑖𝑛 𝜔×𝑡 − 𝑘×𝑥 (2)

Where 𝜁6 is the wave amplitude set by the user;

𝑥 is assumed zero.
The console, Fig. 10, allows the user to define wave characteristics, scale vessel’s main dimensions,
and input hull form coefficients. At the moment these are changed, the application updates all the cal-
culation and visualization instantaneously. Although the backside calculation is based on wave fre-

416

quency, this parameter is inverted in the GUI. For practical reasons and usability concerns, wave peri-
od is the parameter that the user specifies.

4.2 Simulator workflow

The Simulator workflow can be explained as any other input-process-output system, Fig. 8. It runs in
two synchronized parallel routines that use the same input parameters. Each step is explained as fol-
lows.

Fig. 8: Ship Motion Simulator workflow

The GUI centralizes all inputs the user can manage. It provides interactivity and instantaneously re-
sponse. As a matter of organization, the GUI inputs are divided into vessel and ocean parameters:

• Input 1.1 - Parameters related to the hull form, exclusively used for the vessel motion calcula-
tion. They are length, beam, draught, metacentric height, block coefficient, prismatic length
ratio, and waterplane area coefficient.

• Input 1.2 - Parameters related to the sea state, used for calculating vessel motions and wave
generation. They are wave period, amplitude and heading.

• Calculation 2.1 - The closed-form expressions calculate the wave-induced motion for the pa-
rameters given in the GUI and return the motion amplitudes (heave, pitch and roll) separately.
This function is called every rendered time step as the application runs; so every change in the
GUI will automatically update the amplitudes.

• Calculation 2.2 - The normal distribution generates regular waves as a sinusoid. The same pa-
ra-meters used in Calculation 2.1 are used here. There is no collision or physics engines calcu-
lating the interaction between the ocean and the vessel; they are rather ruled by two distinct
synchronized set of equations. The ocean is simply a representation of the waves coming in
the vessel, which are considered inside the closed-form expressions.

• Output 3.1 - The vessel motion is given by Eq.(1) and updated every render loop. This formula
returns motion amplitudes for each time step, and assigns it to the vessel’s 3D model (Input
1.3), making the model to move.

• Output 3.2 - The waves' formation is given by Eq.(2), which is updated in the same time step
as Eq.(1). This formula applied to the ocean geometry generates the waves.

5. Web Based Real-Time 3D Simulator - Virtual Prototype and Motion Prediction

The application interface is very clean and focuses on the 3D environment. All features are meant to
be straightforward and user-friendly. There is no need to “learn the software”, as it will be intuitively
unveiled within few minutes of use.

417

Fig. 9: Ship Motion Simulator: GUI

The GUI stays at the right-hand side, Fig. 9, and allows the user to vary each parameter value either by
dragging and dropping the blue bars or typing a number. For better precision, it is advised to type the
desired value. There is a retractable tab at the bottom side of the application, which contains the
closed-form expressions output, the movements’ amplitude, and the wave length corresponding to the
given wave period, Fig. 10. The wave length λ is calculated under the assumption of deep water as:

𝜆 = :;<
=>

 (3)

g is the gravity acceleration, ω the wave circular frequency.

Also, down the page, there are graphs of the three uncoupled motions of the vessel, Fig. 11. The same
formulas responsible for updating vessel’s position and rotation also feed the graphs. In this way, they
display the vessel motion in real-time, along with the 3D model.

Fig. 10: Ship Motion Simulator: Amplitudes

418

Fig. 11: Ship Motion Simulator: Real-time graphs

|
Fig.12: Ship Motion Simulator: Controls

It is also possible to navigate through the 3D environment. On mouse-controlled devices, the right
button drags and drop the scene, the left button rotates it, and the scrolling button zooms in and out.
On touchscreen devices, the controls are even more intuitive, since it follows the same scheme as in
any other application: pinch to zoom in and out, twist fingers to rotate, and slide your finger to drag,
Fig. 12.

6. Concluding remarks and extension of the work

There is no doubt that the current level of web-based technology allows the creation of simple and
customized web-based tools that facilitate the engineer’s and the designer’s work. Mainly in early
design stages, those tools provide enough support to go on with the project, saving time and money.
Using open and free resources, it is possible to create applications to improve working practices.

If these applications are made open it favors fast and collaborative development. Open-source codes
allow any user to add contributions, thus accelerating improvements. However, cooperation has its
limits. While we can find many cooperative examples among academic developers, industry seems to
make much less use of such boost. Most companies (or even scholars) are not willing to share their
proprietary knowledge and assets. In doing so, they renounce all the benefits a cooperative undertak-
ing could bring, balancing between profitability and obsolescence.

Our experience is that JavaScript has proved its versatility and potential when applied to maritime
engineering toolbox. Diverse free libraries are available to implement brand new capabilities, or im-
prove the existing ones without the need of hard coding. With the development of advanced solvers,
more complex formulations can be implemented, and the computational capacity hardly will be a con-
straint.

419

Visualizing the system’s response in a 3D web environment is certainly an enhancement when com-
pared to the traditional 2D graphs, which often are not obvious to interpret even for experts. For the
client side, companies can explain or document their results much more intuitively. 3D is appealing
and understandable by anyone.

Considering JavaScript’s expected durability, no work is likely to be lost or outdated, favoring devel-
opments continuity. New features are in process to be implemented in the presented application, such
as first person camera view and motion. Further work could point towards a platform multi-user,
where the same virtual environment would support two simulations at the same time, commanded by
two users in different machines, possibly interacting with each other.

Acknowledgments

The Simulator’s source code benefited from Juliano Monte-Mor’s (UNIFEI, Brazil) and Elias Hasle’s
(NTNU, Norway) expertise in programming. They significantly contributed to improve the code and
fix bugs, providing fundamental assistance. We also benefited from Lars Ivar’s (NTNU, Norway)
work, experience in developing WebGL engineering tools, and assistance, helping on the project’s
kick off. This research is connected to the Ship Design and Operations Lab at NTNU in Ålesund,
which is partly supported by the EMIS Project, in cooperation with Ulstein International AS (Norway)
and the Research Council of Norway.

References

BERTRAM, V.; VEELO, B.; SÖDING, H.; GRAF, K. (2006), Development of a freely available strip
method for seakeeping, 6th Conf. Computer and IT Applications to the Maritime Industries (COMPIT),
Oestgeest, pp.356-368

BERTRAM, V. (2014), Computational methods for seakeeping and added resistance in waves, 13th
Conf. Computer and IT Applications to the Maritime Industries (COMPIT), Redworth, pp.8-16

CHAVES, O.; NICKELSEN, M.; GASPAR, H.M. (2015), Enhancing virtual prototype in ship design
using modular techniques, 29th Eur. Conf. Modelling and Simulation (ECMS), Varna

GINSBURG, D.; GERHARD, S.; CALLE, J.E.; PIENAAR, R. (2011), Realtime visualization of the
connectome in the browser using Webgl, 4th INCF Congress of Neuroinformatics, Boston

HOOS, E.; GRÖGER, C.; MITSCHANG, B. (2015), Mobile apps in engineering: a process-driven
analysis of business potentials and technical challenges, CIRP 33, pp.17-22

JENSEN, J.J.; MANSOUR, A.E.; OLSEN, A.S. (2004), Estimation of ship motions using closed-form
expressions, Ocean Engineering 31/1, pp.61-85

PRESSMAN, R. (2005), Software engineering: A Practitioner's Approach, McGraw-Hill

